Close Menu
Bangla news
  • Home
  • Bangladesh
  • Business
  • International
  • Entertainment
  • Sports
  • বাংলা
Facebook X (Twitter) Instagram
Bangla news
  • Home
  • Bangladesh
  • Business
  • International
  • Entertainment
  • Sports
  • বাংলা
Bangla news
Home Greenland’s 650-foot Mega-Tsunami: The Science Behind the Nine-Day Wave
Climate & Environment English International Nature Science, Research and Innovation

Greenland’s 650-foot Mega-Tsunami: The Science Behind the Nine-Day Wave

Zoombangla News DeskJune 9, 20255 Mins Read
Advertisement

The world watched in astonishment when news broke of a rare, colossal tsunami that struck Greenland in 2023. Not only did it surge to breathtaking heights of nearly 650 feet, but it also defied logic by persisting for an unprecedented nine days. What force could sustain such a monumental phenomenon in a confined Arctic fjord? This is the story of the tsunami wave that shook the Earth — and the scientists who decoded its mystery.

Unleashing the Fury: What Triggered the Greenland Tsunami Wave?

On September 16, 2023, a sudden rockslide in Greenland’s remote Dickson Fjord unleashed a chain reaction that would soon be felt worldwide. The enormous landslide displaced massive volumes of water, creating a tsunami wave with an astonishing height of 200 meters (650 feet). Unlike most tsunamis that quickly dissipate, this wave became a rhythmic beast, reverberating through the fjord’s steep walls for nine relentless days.

  • Unleashing the Fury: What Triggered the Greenland Tsunami Wave?
  • The Role of Satellites: Decoding the Tsunami’s Unusual Longevity
  • Why the Wave Lasted Nine Days: The Resonance of a Fjord
  • Climate Change and the Arctic’s Hidden Dangers
  • Scientific Breakthroughs Enabled by Technology
  • What This Means for the Future
  • FAQs

According to seismic records, the fjord experienced rhythmic vibrations every 90 seconds. These pulses were so powerful they were detected by seismic stations across the globe. Yet, what puzzled researchers was the persistent duration of this wave. That’s where satellite technology stepped in.

tsunami wave

The Role of Satellites: Decoding the Tsunami’s Unusual Longevity

The key to understanding the prolonged tsunami wave came from the SWOT (Surface Water and Ocean Topography) satellite, a collaborative mission by NASA and France’s CNES. Just one day after the disaster, SWOT’s Ka-band Radar Interferometer flew over the area, capturing high-resolution images of water surface elevations within Dickson Fjord.

These images revealed something unprecedented. The north wall of the fjord was up to 1.2 meters (4 feet) higher than the south, a clear indicator of a trapped, oscillating waveform. This resonant motion is akin to a tuning fork: energy confined within a chamber, endlessly bouncing until it slowly fades.

“SWOT happened to fly over at a time when the water had piled up pretty high against the north wall of the fjord,” said NASA JPL’s sea-level expert Josh Willis. “Seeing the shape of the wave—that’s something we could never do before SWOT.”

Why the Wave Lasted Nine Days: The Resonance of a Fjord

Dickson Fjord’s geography played a critical role in the wave’s persistence. It is about 2.7 kilometers wide and 540 meters deep, bordered by cliffs that rise over 1,800 meters (6,000 feet). This narrow, enclosed cavity acted like a resonance chamber. With limited escape routes for the wave’s energy, it simply ricocheted from wall to wall.

This phenomenon is not entirely new. Similar, though less intense, oscillations have been observed in other fjords. But the scale and duration seen in Dickson Fjord were unprecedented. The wave’s back-and-forth motion, every 90 seconds, generated a steady seismic pulse, recorded around the world.

Such trapped energy in natural formations could become more common as Arctic landscapes continue to destabilize due to climate change. Melting permafrost and glacial retreat are making massive rockslides more frequent — and more dangerous.

Climate Change and the Arctic’s Hidden Dangers

Events like the Greenland tsunami wave serve as stark reminders of the cascading effects of global warming. As glaciers melt and permafrost thaws, the structural integrity of Arctic cliffs weakens. Landslides become more likely, which in turn can create massive displacement waves, especially in confined fjords.

Scientists warn that this event could signal future patterns. Fjords across the Arctic could be ticking time bombs, capable of generating devastating waves without warning. Monitoring them with tools like SWOT could be our best hope for early detection and mitigation.

This discovery adds to a growing body of knowledge that includes other impactful natural phenomena in the Arctic. For related developments, check out our previous coverage on climate-triggered natural events and Arctic geological activities.

Scientific Breakthroughs Enabled by Technology

Before SWOT, our understanding of tsunamis in such remote areas was largely speculative. Now, with high-resolution satellite imaging and real-time monitoring, researchers are equipped to study and predict the behavior of tsunamis with greater accuracy.

This case highlights how investment in earth observation technologies can yield life-saving insights. It not only answered long-standing questions but also opened new avenues for understanding seismic and oceanic behavior in inaccessible areas.

What This Means for the Future

The Greenland tsunami wave wasn’t just a natural disaster; it was a wake-up call. It showed the power of Earth’s hidden forces and the importance of staying vigilant in an ever-changing climate. From better monitoring to increased awareness, the path forward involves combining science, technology, and public readiness to mitigate future risks.

Kali GPT: Revolutionizing Cybersecurity with AI-Powered Penetration Testing

FAQs

What caused the Greenland tsunami wave in 2023?

A massive rockslide in Dickson Fjord triggered the tsunami, displacing water and creating waves nearly 650 feet high.

Why did the tsunami wave last for nine days?

The narrow and deep structure of Dickson Fjord trapped the wave’s energy, causing it to bounce back and forth, sustaining its motion.

What technology helped decode the tsunami’s behavior?

NASA and CNES’s SWOT satellite provided high-resolution images that revealed the oscillating nature of the tsunami wave.

Can similar tsunami events happen elsewhere?

Yes, especially in other Arctic fjords where climate-induced geological instability can trigger landslides and similar wave patterns.

What is the significance of this event in climate science?

It underscores the interconnected risks of climate change, highlighting how glacial melt and permafrost thaw can lead to catastrophic natural events.

How can we prevent such disasters?

While we can’t prevent them entirely, continuous monitoring with satellite tech and geologic surveys can provide early warnings.


iNews covers the latest and most impactful stories across entertainment, business, sports, politics, and technology, from AI breakthroughs to major global developments. Stay updated with the trends shaping our world. For news tips, editorial feedback, or professional inquiries, please email us at [email protected].

Get the latest news and Breaking News first by following us on Google News, Twitter, Facebook, Telegram , and subscribe to our YouTube channel.

2023 rockslide Greenland 650 foot wave Greenland 650-foot Arctic fjord tsunami Arctic geological instability tsunami Arctic landslide tsunami behind climate climate change Arctic climate change tsunami risk Dickson Fjord Dickson Fjord tsunami english environment fjord resonance tsunami Greenland fjord wave Greenland tsunami Greenland tsunami 2023 greenland’s innovation international longest tsunami ever mega-tsunami Greenland mega-tsunami: NASA sea level study NASA SWOT satellite tsunami NASA tsunami study nature nine-day research satellite detection of tsunamis science seismic wave fjord seismic waves from tsunamis SWOT Ka-band radar tsunami SWOT satellite the tsunami triggered by rockslide tsunami wave tsunami wave lasts 9 days unusual tsunami phenomena wave প্রভা
Related Posts
who is ceedee lamb girlfriend

Who Is CeeDee Lamb Girlfriend? Age, Career and Relationship Timeline Explained

November 28, 2025
Wordle Hints

Today Wordle Hints: Key Clues and the Final Answer for November 28

November 28, 2025
Taylor Swift Chiefs game

Chiefs Cowboys Halftime Show Leads Taylor Swift Surprise Speculation After Eminem Moment

November 28, 2025
Latest News
who is ceedee lamb girlfriend

Who Is CeeDee Lamb Girlfriend? Age, Career and Relationship Timeline Explained

Wordle Hints

Today Wordle Hints: Key Clues and the Final Answer for November 28

Taylor Swift Chiefs game

Chiefs Cowboys Halftime Show Leads Taylor Swift Surprise Speculation After Eminem Moment

Fuzzy Zoeller cause of death

Fuzzy Zoeller cause of death: What we know after the golf legend dies at 74

Cowboys vs Chiefs Thanksgiving

Chiefs vs Cowboys Predictions Updated After Key Injury News for Thanksgiving

How did Agnieszka Maciag die

How Did Agnieszka Maciag Die? What Family Said About Her Death

Taylor Swift

Taylor Swift Attendance Update for Chiefs Cowboys Thanksgiving Game

Nyt connections hints

NYT Connections Hints November 28: Today’s Puzzle Answers for #901

Powerball drawing

Powerball Winner Update: Multiple Big Prizes After November 26 Drawing

Dallas Cowboys vs. Las Vegas Raiders Prediction

What Channel Is the Cowboys Game On Today and How to Watch vs Kansas City

  • Home
  • Bangladesh
  • Business
  • International
  • Entertainment
  • Sports
  • বাংলা
© 2025 ZoomBangla News - Powered by ZoomBangla

Type above and press Enter to search. Press Esc to cancel.