বিজ্ঞান ও প্রযক্তি ডেস্ক : ১৯১১ সাল। অস্ট্রিয়ান-মার্কিন বিজ্ঞানী ভিক্টর হেস একটা পরীক্ষা চালান। তিনি একটা বেলুন উড়িয়েছিলেন মহাকাশে, বায়ুমণ্ডলের ওপর দিকে। সেটার সঙ্গে যুক্ত ছিল একটা গোল্ডলিফ স্পেক্টোমিটার, যাকে বাংলায় স্বর্ণপাত তড়িৎবিক্ষণ যন্ত্র বলে।
এই যন্ত্রের সাহায্যে চার্জযুক্ত কণাদের শনাক্ত করা যায়। এই যন্ত্রের সেকালে খুদে কণাদের শনাক্ত করা হতো। আসলে হেস যন্ত্রটিকে আকাশে পাঠিয়েছিলেন মাটির হাত থেকে বাঁচানোর জন্য। কেন?
তড়িৎবিক্ষণ যন্ত্রের সাহায্যে কোনো গ্যাসে চার্জিত কণাদের অস্তিত্ব প্রমাণ করা যায়।
গ্যাসটিকে এই যন্ত্রের ভেতর ঢোকালে সমধর্মী কণাগুলো এর ভেতরে পরস্পরের সমান্তরালে রাখা ধাতব পাতে এসে জড়ো হয়। পাত দুটির মধ্যে তখন বৈদ্যুতিক বিকর্ষণী বলের প্রভাব কার্যকর হয়। তখন পাত দুটির মধ্যে দূরত্ব বাড়ে। একসময় এদের মধ্যে বৈদ্যুতিক বিকর্ষণ বল বাড়তে থাকে।
ফলে একসময় এদের মধ্যে দূরত্ব এতটাই বাড়ে, এদের অবস্থান তখন এমন হয়, ইংরেজি V বর্ণের রূপ নেয়।
যতক্ষণ চার্জিত কণাদের উপস্থিতি থাকে, পাত দুটিতে ততক্ষণ এদের অবস্থান V-এর মতো থাকে।
কতক্ষণ চার্জের উপস্থিতি থাকবে পাত দুটিতে?
যতক্ষণ না বিপরীতধর্মী কোনো কণা এর ভেতরে এসে না পড়ে, ততক্ষণ। কিন্তু আশপাশে যদি তেজস্ক্রিয় বস্তু থাকে, তাহলে তেজস্ক্রিয় রশ্মি থেকে আসা বিপরীত চার্জের কণাদের প্রভাবে চার্জ প্রশমিত হতে থাকে পাত থেকে। সঙ্গে বিকর্ষণও কমতে থাকে এদের মধ্যে।
একসময় সম্পূর্ণ চার্জ শূন্য হয়ে পাত দুটি আবার পরস্পরে কাছাকাছি চলে আসে এবং সমান্তরালে অবস্থান করে।
তেজস্ক্রিয় বস্তু আশপাশে থাকলে এমনটা হওয়ার কথা। কিন্তু বিজ্ঞানীরা দেখলেন তেজস্ক্রিয় বস্তু আশপাশে না থাকলেও এমনটা হচ্ছে। কেন? এর ব্যাখ্যা পেতে বিজ্ঞানীদের সময় লাগেনি। যেকোনো পরীক্ষাগার তো মাটির ওপরেই থাকে। মাটির থেকে কতটুকুই বা ব্যবধান? মাটির অভ্যন্তরে প্রাকৃতিক তেজস্ক্রিয় মৌলের অভাব নেই। সেগুলো ক্রমাগত তেজস্ক্রিয় রশ্মি বিকরণ করে যাচ্ছে। তেজস্ক্রিয় রশ্মির ভেদনক্ষমতা এতটাই বেশি, চাইলেই ভূপৃষ্ঠ সেগুলোকে আটকে রাখতে পারে না। মাটি ভেদ করে, গবেষণাগারের দেয়াল পেরিয়ে এসে আছড়ে তড়িৎবিক্ষণ যন্ত্রের ধাতব পাতে। তখন বিপরীতধর্মী চার্জের সংস্পর্শে পাত দুটির চার্জ প্রমশিত হয়। তবে এই প্রশমনটা কিন্তু খুব দ্রুত হয় না। চার্জ প্রশমিত হওয়ার আগে বিজ্ঞানীরা তাদের পর্যবেক্ষণের জন্য মোটামুটি সময় পান। কারণ ভূ-পৃষ্ঠ ভেদ করে আসা তেজস্ক্রিয় রশ্মির পরিমাণ এত বেশি নয়। কিন্তু কিছু কিছু পরীক্ষার জন্য বিজ্ঞানীদের আরো একটু বেশি সময়ের প্রয়োজন। সেই সময়টুকু তারা পাচ্ছিলেন না।
বিজ্ঞানীরা তখন নানা রকম চেষ্টা করলেন চার্জ প্রমশনে বাধা দেওয়ার। এ জন্য বাতাসের আর্দ্রতা বেশি যে অঞ্চলে বেশি সেখানে নিয়ে গিয়ে দেখলেন। কাজ হলো না, জলীয় বাষ্প বাধা দিতে পারল তেজস্ক্রিয় বিকিরণকে। তারপর একটা সিসার পাতে মোড়ানো বাক্সে তড়িৎবিক্ষণ যন্ত্রটিকে স্থাপন করলেন। তাতে প্রশমনের হার কমানো সম্ভব হলো। কিন্তু একেবারে বন্ধ করা গেল না। তখন ভিক্টর হেস এই বেলুন পরীক্ষার আশ্রয় নেন। ভূ-পৃষ্ঠ থেকে ১০ কিলোমিটার ওপরে বেলুনেসহ স্বর্ণপাতটিকে স্থাপন করেন। তাঁর ধারণা ছিল, মাটি থেকে অনেক ওপরে থাকবে বেলুন, তাই স্বর্ণপাত দুটিতে অত সহজে চার্জ প্রশমিত হওয়ার সুযোগ থাকবে না। কিন্তু এই পরীক্ষার ফল হলো উল্টো।
হেস লক্ষ করলেন, মহাকাশে গিয়ে স্বর্ণপাতে চার্জ প্রশমিত হওয়ার হার তো কমছেই না, বরং উল্টো উচ্চতা বৃদ্ধির সঙ্গে সঙ্গে চার্জ প্রশমনের হার বাড়ছে। কেন? তখন হেসকে অনুমানের ওপর নির্ভর করতে হলো। তিনি ধরে নিলেন, নিশ্চয়ই মহাকাশে তেজস্ক্রিয় রশ্মির মতো চার্জযুক্ত কণাদের স্রোত আছে এবং সেগুলো নিয়মিত পৃথিবীর বায়ুমণ্ডলে ঢুকে পড়ছে। সেগুলোর সংখ্যা ও ভেদনক্ষমতা অনেক বেশি। তাই দ্রুত স্বর্ণপাতে ঢুকে এর চার্জ প্রশমিত করে দিচ্ছে। হেসের এই অনুমান ঠিক ছিল। তাই ১৯৩৬ সালে কার্ল অ্যান্ডারসনকে পজিট্রন আবিষ্কারের জন্য যখন নোবেল দেওয়া, যৌথভাবে সেই পুরস্কারের ভাগ পেয়েছিলেন হেস।
২.হেসের পরীক্ষায় নিশ্চিত হওয়া গেল মহাকাশে চার্জিত কণা আছে যথেষ্ট পরিমাণে। কিন্তু এই কণার জন্ম কিভাবে হচ্ছে? এদের অন্যান্য বৈশিষ্ট্যই বা কেমন?
কোয়ান্টাম বলবিদ্যার তখন রমারমা যুগ। তা সত্ত্বেও মহাকাশের ওই রহস্যময় রহস্যময় কণাদের নিয়ে খুব বেশি মাতামাতি হয়নি। কিন্তু বিংশ শতাব্দীর বিশের দশকের মাঝামাঝিতে নানা ক্ষেত্রেই ওই কণাগুলোর ভূমিকা গুরুত্বপূর্ণ হয়ে ওঠে। ১৯২৫ রবার্ট অ্যান্ডুজ মিলিক্যান একটা ব্যাখ্যা দাঁড় করানোর চেষ্টা করলেন। বললেন, মহাকাশে যেসব চার্জিত কণাদের প্রভাব দেখা যাচ্ছে, এগুলো আসেলে কণা নয়, একধরনের বিকিরণরশ্মি। মিলিক্যান আরো বললেন, এই বিকিরণ আসলে মাইক্রোওয়েভ অর্থাৎ ক্ষুদ্র তরঙ্গ। এদের ভেদনক্ষমতা গামা রশ্মির চেয়েও বেশি। ফলে এরা আরো শক্তিশালী। কিন্তু এদের জন্মপ্রক্রিয়া সম্পর্কে তেমন কিছুই বলেননি মিলিক্যান। তবে তিনিই এই বিকিরণের নাম দিয়েছিলেন কসমিক রে বা মহাজাগতিক রশ্মি।
মিলিক্যানের সঙ্গে একমত হতে পারেননি আরেক মার্কিন কণাপদার্থবিজ্ঞানী আর্থার কম্পটন। কম্পটন ইফেক্টের জনক তিনি। সুতরাং তাঁর কথাও গুরুত্বপূর্ণ। তিনি বলেছিলেন মহাজাগতিক রশ্মি আসলে স্রেফ আলোকরশ্মি নয়, চার্জিত কণাদের স্রোত। ঊনবিংশ শতাব্দীর শেষ দিকে ক্যাথোড রশ্মি নিয়ে যে বিতর্কটা তৈরি হয়েছিল, ব্রিটিশ জার্মান বিজ্ঞানীদের মধ্যে—ক্যাথোড রশ্মি আলোক তরঙ্গ নাকি বস্তু কণাদের স্রোত—সে ধরনের একটা পরিস্থিতিই তৈরি হলো কম্পটনের এই মন্তব্যের মাধ্যমে। এই বিতর্ক আগেরটার মতো ডালপলা ছাড়তে পারেনি। কারণ কম্পটন নিজেই নিজের তত্ত্বের পেছনে প্রমাণ খুঁজতে মরিয়া হয়ে উঠেছিলেন।
তিনি যুক্তি দিয়েছিলেন, অতিপারমাণবিক কণাদের গতিশক্তি যদি খুব বেশি হয়, তাহলে এদের ভেদনক্ষমতা গামা রশ্মির চেয়েও বেশি হতে পারে। তা ছাড়া কণা হওয়ার পক্ষে শক্ত যুক্তি হলো, মহাজাগতিক রশ্মি চার্জযুক্ত, কারণ স্বর্ণপাতের চার্জ প্রশমন করে এই রশ্মি নিস্তড়িৎ করে দিতে পারে।
কিন্তু গামা রশ্মির মতো বিদ্যুৎ-চুম্বকীয় তরঙ্গ হলে এদেরকে চার্জ নিরপেক্ষ হতে হবে। কিন্তু স্বর্ণপাত পরীক্ষা তা বলছে না। তবু যদি কিছু ভুলচুক থাকে, তাহলে সেটা পরীক্ষা করে দেখা যেতে পারে। অন্যদিকে ১৯২৯ সালে দুই জার্মান বিজ্ঞানী ওয়ালথার বোথে ও ওয়ার্নার কোলহোর্স্টার দেখালেন গামা রশ্মির পক্ষে ৪.১ সেন্টিমিটার স্বর্ণপাত ভেদ করে বেরিয়ে যাওয়া সম্ভব। ফোটনের পক্ষে সেটা সম্ভব নয়।
কম্পটন বললেন, মহাজাগতিক রশ্মি মিলিক্যানের ধারণামতো সত্যিই চার্জনিরপেক্ষ হয়, তাহলে এরা পৃথিবীর চৌম্বকক্ষেত্র দ্বারা প্রভাবিত হবে না। পৃথিবীর সব দিক থেকে এদের বায়ুমণ্ডলে প্রবেশের হার সমান হবে। আর যদি এরা চার্জযুক্ত বস্তুকণা হয়, তাহলে এই হার সমান হবে না। পৃথিবীর চৌম্বকক্ষেত্র এদের ওপর প্রভাব ফেলবে। এদের গতিপথকে বিচ্যুত করে ফলবে। তাই সব অঞ্চলে এদেরকে সমানভাবে পাওয়া যাবে না। মেরু অঞ্চলে এদের এদের ঘনত্ব বেশি পাওয়া যাবে। বিষুবীয় অঞ্চলে এদের ঘনত্ব হবে সবচেয়ে কম। এই তত্ত্বের নাম দেওয়া হলো ল্যাটিচিউড ইফেক্ট বা অক্ষাংশ প্রভাব।
শুধু তত্ত্ব দিয়েই দায়িত্ব শেষ করেননি কম্পটন। তিনি পৃথিবীর বিভিন্ন অঞ্চলে অক্ষাং প্রভাব পরীক্ষা করে দেখেছিলেন। প্রমাণ করেছিলেন, তাঁর অনুমানই ঠিক, বিষুবীয় অঞ্চলে অক্ষাংশ প্রভাব সবচেয়ে কম। বিষুব রেখা থেকে যত উত্তর বা দক্ষিণে গেলেন মহাজাগতিক রশ্মির প্রভাব তত বেশি পেলেন।
কম্পটনের এই তত্ত্বের সঙ্গে একমত হলেন ইতালিয়ান বিজ্ঞানী ব্রুনো বেনেদেতো রসি। ১৯৩০ সালে তিনি একটা হিসাব খাড়া করলেন। মহাজাগতিক রশ্মির গতিপথের দিক ঠিক করে দিলেন তিনি গণিতের ছাঁচে ফেলে। বিদ্যুৎক্ষেত্র আর চুম্বকক্ষেত্র পরস্পরের ওপর লম্বভাবে ক্রিয়া করে। পৃথিবীর চুম্বকক্ষেত্র উত্তর-দক্ষিণ বরাবর ক্রিয়াশীল। তাই বাইরে থেকে কোনো বৈদ্যুতিক চার্জযুক্ত কণাকে আসতে হয়, তাহলে একে ঢুকতে হবে পূর্ব অথবা পশ্চিম দিক থেকে। রোসি হিসাব কষে দেখিয়ে দিলেন, যদি মহাজাগতিক রশ্মির ধনাত্মক চার্জযুক্ত হয় তাহলে সেগুলো পৃথিবীতে ঢুকবে পশ্চিম দিক থেকে। কিন্তু এর চার্জ যদি ঋণাত্মক হয়, তাহলে এগুলো পূর্ব দিক থেকে পৃথিবীতে ঢুকবে।
রোসির এই তত্ত্বের প্রমাণ মিলল অচিরেই। ১৯৩৫ সালে মার্কিন বিজ্ঞানী টমাস হোপ পরীক্ষা করে দেখালেন, মহাজাগতিক রশ্মি পশ্চিম দিক থেকেই পৃথিবীতে প্রবেশ করে। তার মানে এগুলো ধনাত্মক চার্জের কণা।
৩.হোপ দেখিয়েছিলেন, মহাজাগতিক রশ্মি ধনাত্মক কণাদের স্রোত। কিন্তু এই কণাগুলো আসলে কী?
একসময় ক্যাথোড রশ্মি পরীক্ষা করে দেখা গিয়েছিল সেগুলো ইলেকট্রনের স্রোত। আলফা রশ্মিতে ছিল আলাফা কণা অর্থাৎ হিলিয়াম নিউক্লিয়াস। তারপর দেখা গেলে বেটা রশ্মিও মূলত ইলেকট্রন দিয়ে তৈরি। কিন্তু এতে সামান্য অ্যান্টি-নিউট্রিনোও থাকে। তাহলে কসমিক রশ্মি কী দিয়ে তৈরি?
বিশ শতকের ত্রিশ ও চল্লিশের দশকে সারা বিশ্বে মহাজাগতিক রশ্মি নিয়ে অনেক গবেষণা চলল। নানা রকম তথ্য জমা পড়তে শুরু করল বিজ্ঞানীদের হাতে। প্রমাণ হলো, কসমিক রশ্মির ৯০ শতাংশ আসলে প্রোটন অর্থাৎ হাইড্রোজেন কণা দিয়ে তৈরি। চল্লিশের দশকের শেষ দিকে এসে আরো অনেক কণার হদিস মিলল মহাজাগতিক রশ্মিতে। পাওয়া গেল আলফা কণা অর্থাৎ হিলিয়াম নিউক্লিয়াস। এ ছাড়া খুব সামান্য পরিমাণ কার্বন, লোহা এবং সিসার নিউক্লিয়াসও পাওয়া গেল। এ ছাড়া আরেকটা গুরুত্বপূর্ণ তথ্য জানা গেল, বায়ুমণ্ডলের ওপরের কসমিক রশ্মি আর পৃথিবীতে আসা কসমিক রশ্মির মধ্যে পার্থক্য আছে।
বায়ুমণ্ডলে গ্যাসের পরমাণুতে সংঘর্ষের পর কসমিক রশ্মিতে যেমন ভাঙন ধরে, ভাঙন ধরে বায়ুমণ্ডলের গ্যাসের নিউক্লিয়াসে। তৈরি হয় ছোট ছোট অনেক কণা—মিউয়ন, ফোটন ইত্যাদি। এসবের মিশেলেই আসলে মহাজাগতিক রশ্মি তৈরি হয়।
৪.বায়ুমণ্ডলের ওপরে যে মহাজাগতিক রশ্মি, সেগুলো কোত্থেকে এলো?
পৃথিবীতে যেসব মহাজাগতির রশ্মি এসে পড়ে, এগুলোর মূল উৎস আসলে সূর্য। সূর্যের ভেতরে যে নিউক্লিয়ার বিক্রিয়া সংঘটিত হয়, সেখান থেকেই চার্জিত কণাগুলো দ্রুতবেগে চারপাশে ছড়িয়ে পড়ে। সেগুলোর একটা অংশের ভাগ পায় পৃথিবী। প্রবল বেগে ছুটে আসা সে সব কণা পৃথিবীর চৌম্বক্ষেত্রের সঙ্গে মিথস্ক্রিয়া করে। এর ফলে একটা তীব্র চৌম্বক ক্রিয়ার জন্ম হয়। কণাগুলো আরো প্রবল হয়ে পড়ে। ফলে কণাগুলোর বেগ আরো বেড়ে যায়। আলোর বেগের অনেকটাই কাছাকাছি উঠে যায় এদের বেগ। এই আলোড়নের ফলে জন্ম হয় সৌর বায়ুর। মেরু অঞ্চলে যে মেরুপ্রভা দেখা যায়, তারও মূল কারিগর মহাজাগতিক রশ্মি।
শুধু সূর্যই নয়, মহাবিশ্বের সকল নক্ষত্রই এ ধরনের মহাজাগতিক রশ্মির উৎস হতে পারে। তবে অন্য নক্ষত্র থেকে মহাজাগতিক রশ্মি পৃথিবীতে পৌঁছতে পারে না দূরত্বের কারণে। এত দূরের পথ পাড়ি দেওয়ার বহু আগেই সেসব কণা শক্তি হারিয়ে ফেলে। তবে সুপারনোভা বিস্ফোরণের কথা আলাদা। একটা নক্ষত্র যখন মৃত্যুর কাছাকাছি এসে পড়ে, তখন এর ভেতরে ঘটে নিউক্লিয়ার ফিউশন, কোয়ান্টাম অপবর্জনজনিত চাপ আর মহাকর্ষ বলের ত্রিমুখী প্রভাবে বিস্ফোরিত হয়। সেই বিস্ফোরণের নক্ষত্রের বহিঃপৃষ্ঠ ছিন্নভিন্ন হয়ে যায়। তখন কয়েক মুহূর্তের জন্য এতটাই উজ্জ্বল হয়ে ওঠে নক্ষত্রটা, গোটা গ্যালাক্সির সমান উজ্জ্বল হয়ে ওঠে।
সুপরানোভা বিস্ফোরণ থেকে যে মহাজাগতিক রশ্মি উৎপন্ন হয়, সেগুলো পৌঁছে যেতে পারে পৃথিবীতে। সূত্র : কালেরকন্ঠ
জুমবাংলা নিউজ সবার আগে পেতে Follow করুন জুমবাংলা গুগল নিউজ, জুমবাংলা টুইটার , জুমবাংলা ফেসবুক, জুমবাংলা টেলিগ্রাম এবং সাবস্ক্রাইব করুন জুমবাংলা ইউটিউব চ্যানেলে।